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1. SUMMARY

This report covers the progress made during the entire period of a program (Nov. 1982 to Nov.
1990) to develop a 30 GHz monolithic receive module for communication antenna feed array
applications, to deliver submodules and 30 GHz monolithic modules for experimental evaluation
and to develop and deliver functional four bit phase shifters (as an add-on contract) to
NASA/LeRC and JPL. Key requirements for receive module include an overall receive module
noise figure of 5 dB, a 30 dB RF-to-IF gain with six levels of intermediate gain control, a 5 bit
phase shifter, and a maximum power consumption of 250 mW. Key requirement for the add-on
four bit phase shifter is minimum loss (approximately 8 dB) over the bandwidth 31-33 GHz. In
addition, the monolithic receive module design addresses a cost goal of less than $1,000 (1980
dollars) per receive module in unit buys of 5,000 or more, and a mechanical configuration that is
applicable to a space-borne phased array system. These requirements are summarized as
performance goals in Table 1-1.

In Table 1-2 a summary of technical accomplishments is listed out during the whole program
period. The accomplishments are shown with the task numbers. Except the task VII, which was
discontinued for lack of funds, all other tasks were completed along with the delivery
requirements.

In Figure 1-1 and 1-2 we show the submodule functions of receive module and block diagram of
overall monolithic receiver with gain budgets. The monolithic receiver contains four function RF
chips namely LNA, IPS, GC, and RF/IF mixer. The main design objective is to interconnect the
submodules to produce the complete receive module.

In Section 2 we will discuss each technical effort by task number. The circuit layout, experimental
results, and conclusions will be given for all submodules. In section 3 we will discuss future
improvement plans and recommendations for integration of the module.
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TABLE 1-1. NASA'S KEY PERFORMANCE GOALS

Design Parameter ~ Performance Goal
A. RECEIVE MODULE
RF Band 27.5 - 30 GHz
IF Center Frequency Between 4 -8 GHz

Noise Figure at Room Temperature

<5dB

RF/IF Gain

< 30 dB at highest level of gain control

Gain Control

At least six levels: 30, 27, 24, 20, 17 dB and
Off

Phase Control

3 bits, each bit + 3* at band center

Module Power Consumption 250 mW in all states. In OFF state, 25 mW

Phase and Gain Control Operate on digital input

Mechanical Design Fully monolithic construction, compatible with
30 GHz spaceborne phase array applications

Unit Cost

Less than $1000 (1980 dollars) in unit buys of
5000 or more

B. PHASE SHIFTER (add-on)

RF Band

31-33 GHz

No. of Bits

4 (180°, 90°, 45°, 22.5°)

Insertion Loss

<8dB
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1-2. SUMMARY OF TECHNICAL ACCOMPLISHMENTS WITH
TASK NUMBERS

TASK # DESCRIPTION COMMENTS
I Device and circuit design for | Completed in the first! year.
receive module
o Design, fabrication, and Initial fabrication and evaluation completed in

evaluation of 5-bit phase shifter

the first! year. Delivery of 25 phase shifters

for receive module using self- | (out of 100 required) completed in the second?
aligned gate (SAG) process year.
Delivery of the remaining 80 phase shifters
) completed in the third3 year.

I Design, fabrication, and Initial design and layout completed in the first!
evaluation of the gain control | year.
block for receive module, using | First run and initial evaluation of a hybrid
dual gate FET amplifiers. amplifier completed in the second? year.

A redesign of the gain control block was
completed in the third3 year.

Demonstration of a two-stage monolithic GCA
(with 13 dB gain control) and delivery of 100
GCA chips completed in the fifthS year.

v Design and development of Development of critical mixer component
ion-implanted mixer (RF/IF (Schottky diode compatible with FET
submodule) for receive technology) initiated and preliminary results
module. obtained in the third3 year.

Design, fabrication, and evaluation of RF/IF
mixer, LO 22 GHz amplifier, IF amplifier
completed in the fourth? and fifth’ years.
Delivery of 49 dc screened RF/IF mixer IC's
and one mounted mixer chip completed in the
sixth6 year and 10 LO amplifier chips
completed in the fifthd year.
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TABLE 1-1. SUMMARY OF TECHNICAL ACCOMPLISHMENTS WITH
TASK NUMBERS (cont.)

TASK # DESCRIPTION COMMENTS
\' Design, fabrication, and FET design for LNA completed in the first!
evaluation of ion implanted year. Device evaluation completed in the
LNA for receive module second? year.
Two stage LNA MMIC (7 dB gain and 6.2 dB
NF) demonstrated and 10 LNA chips delivered
at the end of fifth3 year.
VI Interconnection of individual | Overall drawing and dimension for the

submodules (LNA, phase
shifter, GCA, and RF/TF
mixer) into a receive module
with bond wires.

interconnected receive module completed in the
fourth? year.

Development, demonstration and delivery of
interconnected submodules as receive module
(3 in total) completed in the fifthS year.

Vil Development of monolithically | First fabrication of a monolithic CTS receiver
integrated receive module with | initiated in the fifthS year with three chips
three RF functions namely integrated on chip, namely a two-stage LNA, a
LNA, phase shifter and GCA, | reduced size phase shifter and digital control
and digital control circuits for | logic in the fifthS year.
the phase shifter. RF evaluation of the two-stage LNA circuit
produced unsatisfactory results in the sixth6
year, a few process problems detected, but no
second iteration planned due to lack of funding;
the effort stopped in the sixthS year.
Vil Assessment of Honeywell A report submitted for the receive module in
technology and the results April, 1988.
during the program, and
comparison with the available
technologies responded in the
technical literature.
IX Record keeping of device and | Maintained from the beginning of the program.
circuit developed.
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TABLE 1-2. SUMMARY OF TECHNICAL ACCOMPLISHMENTS WITH
TASK NUMBERS (cont.)

X

Reporting.

Updated monthly and annual technical progress
reports, monthly and quarterly financial and
management reports submitted as required by
the contract. :

XI

Design, fabrication, evaluation,
and delivery of four bit phase
shifter (31-33 GHz) for
NASA/LeRC and JPL.

First design iteration and evaluation completed
in the seventh? year of the program.

Second iteration, evaluation, and RF tested
phase shifter chips delivered to NASA/LeRC
(50 chips) and JPL (35 chips) at end of the
eighth8 year.

First year - November 1982-October 1983

Second year - November 1983-October 1984
Third year - November 1984-October 1985
Fourth year - November 1985-October 1986

Fifth year - November 1986-October 1987
Sixth year - November 1987-October 1988

Seventh year - November 1988-October 1989
Eighth year - November 1989-October 1990



2. PROGRAM IMPLEMENTATION BY TASKS

The objective of this program was to develop a 30 GHz monolithic receive module for
communication antenna feed array applications, to deliver submodules and 30 GHz receive
modules for experimental evaluation. During the course of this program, an extra task was added
to develop and deliver 32 GHz 4-bit phase shifters for NASA/JPL applications. Key performance
and design goals are mentioned in Table 1-1. In Table 1-2 we summarized the tasks and their
status. In the following selections, we will discuss different tasks and the progress made over the
course of this program. We will go over the tasks serially.

2.1 TaskI- Receive Module Design

This task was completed in the first year of the program (Nov. 1982-Nov. 1983). The effort was
directed towards a detailed initial design of the complete receive module and four submodules. The
four submodules include low noise amplifier (LNA), a phase shifter (PS), a gain control (GC) and
an RF/IF mixer (RF/IF). The work was also done on the device design that would be suitable for
specific submodule. Ion implantation was chosen as the baseline technology, to make the receive
module cost effective (the cost goal was to have the monolithic module under $1,000).

2.1.1 Phase Shifter Design

A more comprehensive design was completed for the phase shifter submodule during this task than
the other three submodules. The reason was, the phase shifter delivery was due early in the
program. Two types of phase shifter topology were examined initially [1]; one with shunt FET
switches and the second one with series FET switches. The latter approach was ultimately chosen
because of ease of microstrip circuit layout and less GaAs area. The final topology for the phase
shifter had three switched line bits (180°, 90°, and 45°*), each using four series FET switches and
one loaded line bit (22.5%) using two shunt FET switches. A detailed loss analysis and topology
selection procedure for the phase shifter is given in section 1.1.2 of the report [1]. Figure 2-1
shows the chip layout and the schematic of 180" bit. The design includes 400 pm wide FETs with
loops for given off state resonance at the center of the band. The electrical line length difference
between two states gives the required phase shift. To maintain the same and low insertion loss
between the two states, the "ON" state insertion loss of the switches should be as low as possible
and the "OFF" state insertion (or isolation) as high as one could achieve. By choosing a proper
gate width, it is possible to come to a compromise between the isolation and insertion loss. The
methodology is discussed in [1], section 1.1.2. Figure 2.2 shows the calculated performance of a
3-bit switched line phase shifter, (180°, 90°, and 45°) and Figure 2-3 shows the calculated



insertion loss envelope for such a 3-bit phase shifter. A four bit version with 22.5° bit as the
loaded line was fabricated later in Task II.

2.1.2 Gain Control

There were two critical requirements for this submodule - a maximum NF of 14 dB at 1 dB
attenuation state and a maximum allowable phase change of +5° over 13 dB change in gain. The
submodule was to provide five levels of RF to IF gain (30, 27, 24, 20, and 17 dB) and an OFF
state. Keeping the above two requirements in mind, a two-stage dual-gate FET amplifier, followed
by a variable passive attenuator was chosen for the gain control. Figure 2-4 shows such a scheme.
Initial design on a two-stage dual-gate FET amplifier was made under the Task I using 100 um
FET. Figure 2-5 shows the circuit schematic and computer optimized gain of such a two-stage
amplifier. Subsequent iteration of the gain control would include the passive attenuator on the
same chip.

2.1.3 RF/F Submodule

This submodule was to provide three functions:
1. Convert the 27.5 to 30 GHz input RF signal to the IF (5.5 GHz) in a mixer;
2. Amplify an external reference signal to provide a local oscillator input (22 GHz) to the
mixer;
3. Amplify and buffer the mixer IF output to drive the IF amplifiers.

Balanced Schottky Diode Mixer - The baseline mixer design approach was the balanced Schottky
diode mixer with a rat race hybrid shown integrated with the other elements of the RF/IF

submodule in Figure 2-6. The input signal inserted on the right side of the chip, is shifted in phase
by 90° to one mixer diode, and 270" to the other. The diodes are connected 180° out of phase to
suppress noise from the local oscillator amplifier and reference signal, while combining the IF
signals in phase. The diodes are connected to IF frequency and dc ground by vias through the
substrate; open circuited stubs are used to ensure a high quality ground for the signal and local
oscillator,

The mixer employs a pair of surface oriented Schottky barrier diodes so that fabrication is
compatible with that of the FETs. Good results [10] were reported using many small diodes in
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paralle! to lower the overall series resistance. The diodes that were used in this program is shown
in Figure 2-7. By decreasing the capacitance of the individual diodes while maintaining an
approximately constant value of series resistance these methods should be useful at 30 GHz.

22 GHz LO Amplifier - The requirements for the 22 GHz local oscillator included a gain of 24 dB
and a noise figure of 5 dB. Other than frequency, the requirements are similar to the RF low noise
amplifier used for the "front end” of the receiver. FETs with 100 Hm gate width were used for the
LO amplifier.

To assess the noise figure and gain trade-offs for the 100 micron FET at 22 GHz, the noise figure

and gain circles were calculated and plotted on the Smith Chart as shown in Figure 2-8. The 3

stage amplifier shown in Figure 2-9 was designed to achieve the required 24 dB total gain and yet

realize the source impedance (e.g., s = .6 + j 1.2) as seen by the first stage especially, to be in the
| region of minimum noise using Figure 2-8 as a guideline.

IE Amplifier - The IF amplifier was primarily needed to buffer the mixer output to drive lower
impedance transmission lines. The requirements included 5 dB gain from 5.5 to 8 GHz. A
preliminary design using a 150 micron FET equivalent circuit in a single stage common source
configuration was developed. The circuit design made use of the so-called "lossy” match
technique, i.e., frequency dependent resistive loss was used to obtain flat gain over a 60%
fractional bandwidth. A gain of about 6 dB was achieved from 5 to 9 GHz.

2.1.4 30 GHz Low Noise Amplifier Submodule

Five stages of GaAs FET amplification were to be used in the LNA. The first three stages were
designed for a noise figure of 4 dB and an associated gain of 6 dB, while the last two stages were
budgeted for slightly higher gains and noise. The number of LNA stages was chosen large enough
to achieve sufficient front end gain to minimize the effects of noise figure contributions and losses

of following submodule components on the total noise figure of the receive module, which was to
be 5 dB.

Because of the low dc power consumption budget (3V and 20 mA for the complete LNA) and the
theoretically predicted improvement of device noise figure with smaller gate widths, the FETs used
in the LNA had gate widths of 100 microns with 0.25 um length. Although even small gate
widths are desirable from an efficiency and noise figure point of view, a lower limit on gate width
exists because of impedance matching considerations. In particular, too small a gate width results
in high impedance levels which are difficult to match to 50 ohms (especially for the FET output

8
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circuit). This is due to design constraints imposed by the physical limitations of monolithically
fabricated reactive circuit elements. The most direct consequence of this difficulty is bandwidth
reduction due to large impedance transformation ratios.

An initial design for the five stage amplifier is shown in Figure 2-10. The FET equivalent circuit
discussed in Section 2.1.5 was used for the FET devices. As shown in the figure the gain is the
required 32 dB + .5 dB from 27 to 31 GHz. Input impedance matching took into account the
gain/noise figure trade-off especially for the first stage. As shown in the figure the design utilized
similar circuit elements which were relatively easy to realize monolithically on a 0.15 mm thick
substrate.

2.1.5 Device Design

Under Task I, device design was directed towards 400 micron switching FETs for phase shifter
design and 100 um FET for LNA design. For the switching FETS, the main design requirement
was low "ON" resistance; SAG (self-aligned gate) technology was found suitable to meet this
requirement. It was estimated a source drain resistance of 5 Q (for 400 jtm) could be achieved

with this technology to bring the insertion loss to 1.5-2 dB per bit.

The devices for low noise amplifier had to meet the following requirements:
(i) low noise figure with sufficient associated gain
(ii) low power consumption
(iii) processing reproducibility

Gain and noise figure can be improved by minimizing the gate length, for this reason e-beam
lithography was chosen for exposing 0.25 um gate. The gate resistance and gate-source resistance
also affect the gain and noise performance. Considerations were given to minimize these
resistances [1]. An initial estimate of the equivalent circuit and noise parameters were made [1]
using published equations. The resultant equivalent circuit model is shown in Figure 2-11 for 0.25
x 100 pm2 FET. Figure 2-12 shows the gain and noise circles for such a FET at 29 GHz. The
analysis of these devices showed the gain and noise figure specifications of the LNA could be met
by such devices.

2.16 Qvenall Recejver

The functional configuration was shown in the previous section 1. The gain, noise figure, dc
power consumption, overall noise and gain performance was shown in Figure 1-1 and Figure 1-2.
Four submodules were interconnected on a single 3x9 mm? carrier plate to form the interconnected

9
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receive module (Figure 2-13). Fin-line waveguide to microstrip transitions were used for LO and
RF, the IF was taken through SMA by a 50 line. An important feature of this fixture is that the
chip would be enclosed in a waveguide below cut-off. This provides an inherent RF shielding and
good isolation between input and output.

2.2 TaskIL Phase Shifter Fabrication and Evaluation

The objectives of this task were the following:

i)  design, fabricate and test a 5-bit phase shifter, each bit + 3® at the center band over 27.5-30
GHz;

ii)  deliver 100 of these monolithic chips to NASA/LeRC

The efforts were started at the beginning of this task to select a proper technology which would be
both reliable and reproducible. Two approaches were tested, one with power FET fabrication and
the other with self aligned gate (SAG) fabrication technique. Two resonant FET switches '
configurations (shunt and series) were also tested. One bit 180° phase shifter was tested using
shunt FETs; and a multibit (3 bit) phase shifter was also designed and tested with series FETs at
the beginning of the program. Figure 2-14 shows the layout of a single bit 180° phase shifter.
Figures 2-15, 2-16(a) and 2-16(b) show the measured insertion phase, rf test fixture (cover
removed) and the measured insertion loss (including 1.4 dB fixture loss) respectively for one of
these 180° bit chips. The SAG technology showed an encouraging trend for lowering the "ON"
resistance below 8 ohms for 400 um device. The "ON" resistance value was verified by modeling
the measured phase shifter performance with the FET parameters. Figure 2-17 shows the multi-bit
phase shifter (180°, 90°, and 45° bits switched line type and 22.5° bit loaded line type) and an
enlarged view of the 90° phase shifter. The initial results for this multibit phase shifter is shown in
[1].

Since two technologies were being developed (SAG and power FET), over multiple runs the

power FET proccss proved as good as SAG in terms of low "ON" resistance (~ 8 ohm) and

showed a higher RF yield. So a final mask set was designed with the following main criteria in

mind;

i)  extension of loaded line phase shifter design to include the 5th 11.25° bit;

ii)  inclusion of an on-chip bias tee circuit;

ili) provision in the mask set to include phase shifter fabrication by either SAG or power FET
process to enhance the yield.
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The fifth bit (11.25%) was incorporated in the same 22.5° loaded line bit by adjusting the gate
voltage of the FETs from 0 to -5V in an analog fashion. Figure 2-18(a) shows the final layout of
such a 5-bit phase shifter with bias Tees on-chip; Figure 2-18(b) shows the layout with four bias
pads (no bias Tee's) as a back up design. The delivery run with these designs was implemented
with power FET fabrication process having recessed gates. Eighty of the phase shifters (Figure 2-
18(a)) were visually inspected, dc tested and delivered to NASA on June 10, 1985. Additionally,
two phase shifter chips were rf tested and mounted on chip carriers and a third was similarly rf
tested and mounted in the test fixture. These three chips along with a comprehensive set of f and
dc data taken from a total of five chips were also delivered. Prior to this delivery, twenty 3-bit
phase shifter submodules including two rf tested ones and a test fixture with a mounted 3-bit phase
shifter were delivered in October, 1984 [2]. These deliveries completed the phase shifter delivery
requirement to NASA. Figure 2-19 shows the rf performance of the 5-bit phase shifter with on-
chip bias (Figure 2-18(a)). Figure 2-20 shows the rf performance of the 5-bit phase shifter with
backup approach. In the design of Figure 2-18(a), the insertion loss at the center of the band (30
GHz) was 8 + 1.5 dB; the phase characteristics were broadband. The loaded line circuit provided
10-15° of additional shift instead of 22.5°. Because of this, the loaded line could not produce the
additional 11.25° bit as predicted. So Figure 2-18(c) shows the results for 16 states. On the other
hand, for the backup design of Figure 2-18(b), it was possible to produce the additional bit of
11.25° as shown in Figure 2-18(d). The responses shown in Figure 2-18(c) and 2-18(d) were
typical of the phase shifter fabricated in the 9th and final run. The gate pad capacitance in the
backup design (Figure 2-20) showed to have effect on the differential phase shift (page 7 of [2]).
The gate loading was explained in {1] on the performance of the phase shifter.

2.3 TaskIIl: Gain Control Amplifier Fabrication and Evaluation

The requirements for gain control submodule have been already discussed in Section 2.1.2. The
mask for gain control contained the following three basic reticles:

(1) discrete dual gate FET,
(2) single and dual gate FETs with input matching,
(3) 2-stage dual gate amplifier.

These three basic element layouts are shown in Figure 2-19(a), (b), and (c). The discrete dual gate
FET consisted of a 0.25 x 100 um?2 FET with two sets of fingers. The dual gate device had an on-
chip MIM capacitor for RF grounding the control gate. The input matching circuits consisted of a
high impedance transmission line with a grounded capacitor at one end. A picture of fabricated
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dual gate FET is shown in Figure 2-20 along with the dc characteristics. The RF results on
discrete dual gate FETs showed a gain of 10 dB at 30 GHz with a gain control ability (by varying
the second gate voltage) of nearly 30 dB. It was also revealed that the device was unstable and the
output reflection was greater than one. A closer look at the simulation showed the source of
instability was due to a common ground used by the source and the second gate. Figure 2-21
shows the schematic of the old dual gate (unstable) along with the schematic of the new dual gate
FET (stable); in the new layout the ground of source and the second gate was made separate. A
new mask was created with the modified dual gate layout with 20 two-stage dual gate amplifiers
per reticle. Besides these complete two-stage dual gate amplifiers, there were two versions of
single stage dual gate amplifier for checking out the input and output matching circuits. Figure 2-
22 shows all the layout for these three amplifiers. The new modified dual gate FET [2] layout is
shown in Figure 2-23. The new final equivalent circuit for this device is shown in Figure 2-24.
The schematic of the two stage amplifier is given in Figure 2-25. The final fabricated circuit was
measured with some on-chip rf tuning as shown in Figure 2-26. The amplifier showed a gain of
12 dB at the center of the band 27.5-30 GHz (Figure 2-27). It had a gain of 12 dB at the center of
the band and the 2 dB bandwidth was 2 GHz, slightly less than the design bandwidth of 2.5 GHz.
The phase shift envelope was 20° at the center of the band and increased to approximately 45° at
the band edge of 27.5 GHz, over the desired range of gain variation. The input return loss was
less than 5 dB over most of the band and output return loss was poorer due to the high output
impedance of the dual gate. The results were reported in 1987 symposium paper [3]. A total
delivery of 100 chips was made at the end of this effort (47 chips were delivered at the end of
second "best effort” iteration, and 53 chips delivered at the end of the third and final iteration).
This was the first gain control circuit demonstration in Ka-band [4).

2.4 TaskIV: REAF Submodule Fabrication Evaluat { Deli

The main functions of this submodule are mentioned in 2.1.3. The submodule consisted of three
parts, namely balanced Schottky diode mixer, IF amplifier and 22 GHz LO amplifier.

2.4.1 Mixer

Figure 2-28 shows the actual fabricated chip of the mixer with modified rat race hybrid. The
circuit consisted of a rat race hybrid, two Schottky diodes, filters and signal ports. Figure 2-29
shows the RF signal and LO magnitude balance at the two diode ports. The diode area selection,
resistance and capacitance calculations are given in an annual report [2, page 18]. Figure 2-30
shows the CALMA layout of ion-implanted mixer diode with 1 pm Schottky contacts for reducing
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the contact resistance. It needs to be mentioned it was a first ever effort to develop a planar, ion
implanted, FET-compatible mixer process using 3 inch wafers with direct step-on-wafer and
optical projection lithography. Since two distinct device structures were needed in the RF/IF
module (the local oscillator reference and IF amplifiers needed submicron FETs and the mixer
needed high cutoff frequency Schottky mixer diodes), a flow chart of the process developed under
HI IR&D programs is described in Figure 2-31. A detailed description can be found in [5]. The
measured conversion loss for two mixer chips from the first iteration is shown in Figure 2-32.
The loss went as high as 15 dB at some frequency in the band. This performance degradation was
traced to the high VSWR at signal and local oscillator ports. The key reason for high VSWR was
high diode junction resistance. The diode resistance after a series of measurements was found to
be 300-400 instead of 115 (with which the mixer was designed) with 1.5 mA of rectified
current. In the final design of mixer, the diodes had 21 one-micron dots connected by airbridge for
minimum parasitic capacitance. A cross-sectional view of such a diode is shown in Figure 2-33.
The measured I-V characteristics of such a diode is given in Figure 2-34. The zero bias junction
capacitance was measured as .0517 pf and the "ON" series resistance was 5 Q. The ideality factor
was ~ 1.06. The final mixer layout is shown in Figure 2-35. Performance of such a mixer was
evaluated with a 22 GHz oscillator source, the measured conversion loss vs. signal and IF
frequency is shown in Figure 2-36 at a local oscillator power level of 13 dBm. The minimum
conversion loss was found to occur at this local oscillator power level (Figure 2-37) over the band
of interest. The mixers developed during this program demonstrated the following for the first
time, 7

1) IF frequencies higher than any other completely planar microstrip mixer

2) ionimplanted mixer diode cutoff frequencies beyond those any other diodes.

A total of 49 mixer chips were visually inspected, dc tested and delivered to NASA. One mounted
mixer chip was also delivered along with those 49 chips.

2.42  [EAmplifier

The schematic for a single stage IF amplifier is shown in Figure 2-38. The corresponding layout is
given in Figure 2-39. The calculated frequency response of the amplifier is shown in Figure 2-40.
Due to process related problem, on-chip IF amplifiers did not function properly due to degraded
FET characteristics. No delivery was made of IF amplifier.

243 22GHzLO Amplifier
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The amplifier was designed with 0.25 x 100 um? gate FET. Figure 2-41 shows the schematic of
the three stage amplifiers with the simulated gain

characteristics. The circuit was checked with
equivalent circuit parameter variation,; it still showed reasonable gain (20 dB) at 22 GHz in the

€xtreme case of more than 50% variation in Cgs and 30% variation in gm. A fabricated chip of this
3-stage amplifier is shown in Figure 2-42. The chip dimensions were approximately 2.3 x 0.8 x

0.15 mm3. The measured gain vs. frequency characteristics are shown in Figure 2-43, Ten local
oscillator amplifiers were delivered to NASA in 1987.

2.5 Task V: Low Noise Amplifiers

The discrete devices (MESFETs: 0.25 x 100 Hm2) were first characterized for gain and noise

figure performance. A single gate FET with input matching circuit was also characterized. Two

types of material were also examined, ion-implanted and VPE. Devices fabricated on ion-
implanted material produced 8.2 dB gain with 3.4 dB noise figure at 17 GHz and 3.8 dB gain with
4.6 dB noise figure at 30 GHz. Devices on VPE material achieved 8.3 dB gain with 2.5 dB noise
figure at 17 GHz. The S-parameters were also characterized. Figure 2-44 shows the measured
S11 and S22 for 0.25 x 100 um? jon implanted FETs. The devices fabricated on VPE material
showed a higher input capacitance and higher transconductance than those for ion implanted
devices. The total gain turned out to be the same for both ion-implanted and VPE devices. It was
decided to follow ion implantation process for compatibility with other submodule fabrication,
Based on the measurement of the discrete devices, an equivalent circuit was derived Figure 2-45
and four different low noise amplifier designs were made. They were:

LNAIA A single stage amplifier based on the 0.25 x 100 um2 FETs

LNAIB A single stage amplifier with different input and output matching networks than
LNAIA

LNA2A A two-stage amplifier based on 0.25 x 100 u.mi gate FETs
LNA2B A two-stage amplifier with different matching networks than LNA2A.

Figure 2-46 shows all these four layouts for the amp
building block for the 32 dB "front-end"”
x 0.15 mm3,

lifiers. The two stage LNA was to serve as a
LNA. The chip size for two-stage LNAs was 2.3 x 0.71

The final circuit (LNA2B) was measured with on-chip modification as shown in Figure 2-47. The
response before and after the modification are shown in Figure 2-48. A total of ten unmodified
two-stage LNA was delivered to NASA. A modified version of the LNA was used in the receive

module delivered to NASA. The low gain of the LNA caused a high overall noise figure for the
receive module.
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2.6 Task VL Interconnect Receive Module Design

The submodule performance goals as well as performance goals of the interconnect receiver are
summarized in Figure 2-49. The interconnected receive module was to consist of four monolithic
chips, the low noise amplifier, phase shifter, gain control amplifier and the RF/IF downconverter.
The receiver was to have a conversion gain around 30 dB with an overall noise figure of 5.0 dB.
The gain control amplifier had an adjustable continuous gain control from -1 dB to 12 dB. A 5-bit
phase shifter was used for phase control. To demonstrate the 30 GHz receiver with existing IC's,
a preliminary version of the receiver was assembled and demonstrated with three chips, a two stage
LNA, a two stage gain control amplifier, and a phase shifter. These chips were individually tested
to screen out RF bad chips before being interconnected. Fig. 2-50 shows the chips in a single
housing having standard waveguide input and output ports. The dc blocking between chips and
simple bias filtering were achieved on quartz substrates (Fig. 2-51). The RF testing of the _
interconnected receive module included gain/loss measurements, relative phase shift measurements
and noise figure measurement. A full set of measurement data was delivered to NASA at the time
of actual demonstration of the receiver at the NASA/LeRC. The data are also given in appendix B
of [5]. Figure 2-52 shows the gain vs. frequency characteristics for the receive module at five gain
settings across the band 27.5-30 GHz. The corresponding relative phase shift is shown in Figure
2-53. Worst case phase envelope for the five different settings was + 12° at the band edges Figure
2-54 shows the relative insertion phase characteristics as the phase shifter chip was cycled through
sixteen states. Nearly full 360° coverage was obtained a the upper band edge, while reduced
coverage of about 310-320° was obtained in the lower half of the band. Finally, in Figure 2-35,
the insertion gain envelope is plotted for all the sixteen states. Itis +2 dB over the whole band.
Noise figure data was taken at center band for the nominal gain settings of + 12,9, 6, 2, and -1
dB. Table 2-1 shows the data. The best noise figure of 14 dB was obtained at the maximum gain
setting of 12 dB. Three such interconnected receiver modules were delivered during the program
period.

2.7 Task VII: Monolithic CTS Receiver Development

The goal for this task was to integrate monolithically the front end RF submodules (LNA, phase
shifter and the GCA). To accomplish this on a single chip, the phase shifter size had to be reduced
significantly. A six-stage LNA had to be incorporated also to increase the front-end gain. An
initial mask with the following items was generated.
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¢ A reduced size 5-bit phase shifter
* A two-stage LNA

 Digital control circuits

* Four and six stage LNAs

» Test FETs and circuits

The first three items above were a combined layout representing a single monolithic IC, and the last
two were separate ICs. Figure 2-56 shows the reticle layout for the whole mask. The designs
were based on 4 mil GaAs substrate. The design philosophy of designing four and six stage
LNAs are given on page 73 of [5]. Figure 2-57 shows the LNA/phase shifter IC consisting of a
reduced size 5-bit phase shifter.

Fabrication of this CTS receiver mask started in 1987. The process involved multiple implants for
the phase shifter switches, logic FETs and LNA FETs. In addition, the gate level process steps
were carried out separately for each device, because of difference in gate lengths and recess etch
depths. The receiver fabrication used a hybrid lithography process with direct-step-on-wafer
optical exposure for all levels except the LNA gate which was exposed by E-beam direct writing in
a multilayer resist. The fabrication was on full 3" wafers. During fabrication of this complex
mask, a few process related problems were detected [5] and corrected. Working phase shifters
with on-chip logic were fabricated and demonstrated. The new phase shifters had two significant
features:

+ The size was reduced from 2.5 x 5.5 x 0.15 mm3 t0 3.2 x 2.7 x 0.15 mm3.
¢ On-chip implanted resistors were used to improve the RF decoupling.

The phase shifter was evaluated both in NASA band (Fig. 2-58) as well as in the best frequency
range of operation (Figure 2-59). Figure 2-60 and 2-61 show the insertion loss envelope for these
two bands. Even through the total overall insertion loss was high, the insertion loss envelope was
reduced substantially (nearly + 0.5 dB at the high end, Figure 2-60). The new phase shifter design
also included 2 on-chip logic circuits with two different designs. A photograph of these logic
circuits is shown in Figure 2-62(a). To demonstrate the logic control of bits, one 180° bit was
connected with bondwire to a logic control circuit. The phase and insertion loss characteristics
with 180" bit are shown in Figure 20-62(b) and 2-62(c) respectively. The characteristics were
similar to those measured earlier with the following exceptions:

* The insertion loss was slightly higher.

* The insertion loss envelope was broader at the lower end of the frequency range.

16



i

f

«1

ik

e

{’ {f

WF‘ !

)

(.

o

{

The higher insertion loss could be partly due to the addition of dc blocks, which would keep the
transmission lines in the phase shifter floating at 6 volt for the control logic. During fabrication of
the CTS receiver with corrected set of masks, a few other process related problems appeared.
They have been discussed in [6]. One more circuit, 2-stage LNA was tested for DC and RF
performance. The layout of such an amplifier on 4-mil substrate is shown in Figure 2-63. Figure
2-64 shows the gain and noise figure performance of a 2-stage amplifier. The best performance
achieved was 7.0 dB noise figure with 6.1 dB gain at 28.5 GHz. Gain and return loss data over
full NASA band is shown in Figure 2-65. RF characteristics of phase shifter were also measured
from the same wafer. The characteristics shown in Figure 2-66 for insertion loss and Figure 2-67
for phase response were taken after cutting the control lines at the crossover points as shown in
Figure 2-68. By reducing the coupling between dc control lines and the RF line, the phase shifter
performance improved; it shows lower insertion loss and tighter loss envelope.

The circuits, 2-stage LNA and phase shifters, so far reported in this subsection from CTS receiver
fabrication did not involve any backside via-hole process. After completion of backside proccsé on
several wafers, a few 2-stage LNA's were selected for evaluation. The 2-stage LNAs used via-
holes and SI3N4 capacitors. The LNAs did not show any gain in NASA's band of interest. 50 dc
tested IC's (including 2-stage LNAs, 4-stage LNAs, 6-stage LNAs and phase shifters) were
delivered to NASA at the end of this effort. Due to funding reductions in the program, the second
and third iteration designs could not be completed as was originally planned at the beginning of this

program [7].
2.8 Task VIII: Technology Assessment

The objective of this task was to report all the results on Honeywell technology during our
program and compare these with the results reported in the technical literature. It was an ongoing
task. A technology assessment report was issued at the end of all the tasks (I-VII) in April 1988
[8]. It compared all the key technology items developed during this program with the performance
data available in the literature.

2.9 TaskIX: Product Assurance

A product assurance program was implemented in accordance with the requirements of section 3.4
of the RFP. Log books concerning device and circuit development and fabrication were
maintained from the outset of the program.
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2.10 Task X: Reporting

Reports included updated work plans, monthly/bimonthly and annual technical progress reports, as
well as monthly and quarterly financial and management reports.

2.11 Task XI: Phase Shifter Development for JPL/NASA

This task was started as an additional program to develop a 4-bit phase shifter for 31-33 GHz
under the direction of NASA/LeRC and NASA/JPL.

We developed two types of phase shifters. The phase shifters are shown in Figure 2-69 and
Figure 2-70. The first one (Figure 2-69) had three switched line type phase bits (180°, 90°, and
45°) and one loaded line type (22.5%). The second one (Figure 2-70) had three modified switched
line bits (180°, 90;°, and 45°) and one loaded line bit (22.5"). The purpose of the second design
was to lower the total insertion loss, while the first design had higher loss but conservative design.
The modified switched line had FETs resonating at different frequencies. Figure 2-71 shows the
difference of 90" bits between the conventional switched line approach and the modified switched
line approach. The modified approach had two resonating FETs in the two branches (branch 1 and
branch 2), while the conventional one had all the FET's resonating at one frequency (in this case
center of the band, 32 GHz). Figure 2-72 shows the modeling of branch #1 FETs with measured
data. It also shows a comparison of different models; one case the total junction inductance is
evenly split, and the other case is with MTEE model available in CAD tool "LIBRA". The
resonant frequencies calculated using these latter methods were quite off the target frequencies.
This shift in in resonance frequencies affect both the insertion loss and phase of the bit. Soitis
required to design the loops properly to set the resonant frequencies right. Figure 2-73 shows the
branch #2 FET model. As may be noted, the FETs in two branches were resonant at two different
frequencies (35 GHz and 21 GHz). Figure 2-74 shows for example the difference in the calculated
insertion loss of two approaches for the 45° bit. Figure 2-75 shows the measured performance
(insertion loss) of these two phase shifters. The modified switched line design performed best
over 32-33 GHz; the main reason was right angle bend discontinuities (which were used at
freedom in this design) were not properly modeled by CAD tool "LIBRA". The transmission
phase (< S21) of the right angle bends seemed to have discrepancy between the CAD model and
the measured value. When the load line bit 22.5° in the new design was set "OFF" (note the bit
was still connected in series with remaining three bits); the resulting measured response is shown
in Figure 2-75. The response shows, the modified switched line approach gives a lower loss of
1.5-2dB than the conventional approach. When the loaded line bit was turned on, the loss went to
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8 dB (from 5 to 6.5 dB). On the other hand the insertion loss for the switched line case remained
between 7 and 9 dB over 31-33 GHz range for 16 states. Figure 2-76 shows the phase response
of the two types. As mentioned earlier, because of suspected discrepancies in the right angle bend
model of the CAD tool "LIBRA" the phase errors were higher in modified switched line circuit. A
lot of right angle bends were used in the new design. Figure 2-77 shows the reflection at port 1
(180" bit side). The reflection on the loaded line side went down to -7 dB in the worst case for
both types of designs. Both types have been checked with 0.5W of power, there was no
noticeable degradation in any of the performances. At the end of the program, we delivered eighty-
five rf functional chips of the conventional switched line design to NASA/LeRC and NASA/JPL.
In the final review, we also strongly suggested a size reduction (by 30% approximately) and
further reduction in insertion loss by going for a different topology and using 0.25 jum gate length
for the device. In the whole program, we developed phase shifters using 1 um gate length only.
A gate length of 0.25 um will reduce the "ON" resistance by a factor of two minimum. By
changing the 4-bit topology from the present one loaded line bit (22.5°) and three switched line bits
(180°, 90°, and 45°) to one loaded line bit (22.5") and three reflective type bits (180°, 90°, and 45°)
one could easily achieve the size reduction of approximately 30%; the latter topology will also cut
down on the number of switching FET's from seven pairs to four pairs only. This would
significantly improve the yield factor. By going for the latter topology and 0.25 um gate length,
one could, in effect, achieve the following:

i)  reduced size

if)  higher yield

iii) lower insertion loss
All the above are considered very important from the system level integration point of view.

3.0 Program Conclusion and Recommendation

The program, during its course, demonstrated the viability of ion implantation technology in Ka-
band; the technology allows easy integration of different components required in receiver ‘
technology. The program has given rise to the possibility of integrating the whole receiver in one
MMIC. The level of integration may to some extent be decided by the performance compromise.
Even though, not fully implemented in this program, a functional integrated receiver should be the
next step. At the end of this program, along side MIMIC Phase 1 (funded by LABCOM) we have
already measured far improved performance for ion implanted 0.25 um device [9]. The three stage
low noise amplifiers have shown 15 dB gain with 3.8 dB noise figure at 35 GHz. We also
suggest a size reduction in the individual chips by adopting a better topology, this will make it
easier to integrate the chip with phased arrays.
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Figure 2-13  Interconnected receive module.

Figure 2-14  Chip picture of 180" phase bit using shunt FETS.
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¢) 2-Stage DuaL GATE AMPLISIER

(a) Discrete dual gate FET.
(b) Single and dual gate FETs with input matching.

(c) 2-Stage dual gate amplifier.
39

N
N

S
R

g

» X
Y,
IN




‘SONSLIZIOLITYD 9P A Y (zwrl 0T X §7'0) LI 13 [enp pateouqe} v 07-T 2m3Ld

134 9iep jeng

5 Ve

Ns.m/wx

e21no0g Jojpoede)

1 ojen wmesq

40

OF POOR QUALITY

ORIGINAL PAGE IS

_r—,



i

700

' —WWWWA—
2.7 0.01 9.5 9.5 1.8
] .
—NWA—; l},w____@._w
== 0.067 == 0.01 0.04
700 v I .
6 6 0.067 .
% =17
{a) OLD DUAL GATE FET
700
——ANMAM,——
2.7 0.01 9.5 9.5 1.8

0.067

- 0. 01
700 s 0.067 ! l
2.3
0.07

{b) MODIFIED DUAL GATE FET

Figure 2-21 (a) Schemadc for old dual-gate FET layout.
(b) Schematic for new dual gate FET layout.
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Figure 2-28  Fabricated chip of RF/IF mixer submodule using Schottky diodes and modified rat
race hybrid (3.1 x 2.2 x 0.15 mm3).
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Figure 2-34  Measured I-V characteristics of a diode used in the mixer.
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A) UNMODIFIED LNA

B)

GAIN - Top TRACE
INPUT RETURN L0SS - BOTTOM TRACE
HORIZONTAL 27-37 GHz
VERTICAL GAIN 5DB/DIN
RETURN Loss 10DB/p!

CENTERLINE ODB
B1As Vg1 = -0.4V
Vg2 = -1.61V
Vp1 = 2.7V
Vp2 = 3.0V
Ip] = 37.5 MA-
Ip2 = 23.2 MA

LNA AFTER 'MODIFICATION

GAIN ' - Top TRACE
RETURN LoSS - BOTTOM TRAC!
HORIZONTAL 27.5-30 GHz
VERTICAL GAIN -5DB/D
RETURN Loss 10DB/D

BIAS Vg1 = -.64V

Vg2 = -1,84V

Vp1 = 3.49V

Vp2 = 2.7QV

Ip1 = 34 MA

Ip2 = 23.3 MA

Figure 2-48  LNA response before and after the modification.
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~ 189 dBm PHMASE REFERENCE SIGNAL
AT 22 GHz
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27530 | 11 b L il 15580
GHr e e e b e e == — j N S B SO J GHz
- Lo 010D
— 5 OR 8 STAGE FET AMP PS LOSS DUAL GATE AMP  MIXER If AMP
NF [o8) 4 4 4 [ 7 ] 14 == 10 L3 [ ] 4
GAKR (Bl 8 6 & 71 7 - Tee12 24 -8 s
-~ VOLTAGEM 3 3 3 3 13 4 3 3
r CURRENT mA) 4 4 4 _4 & 1.8 26 s
.. ~—a—— ————— N
F 14.048 -
_— SUBMODULE F - 4348 F = 8q8 m— FoFe* 2 Tl
MNOISE FIGURE - . F. L, =~ 10aB Gy _—
e 208

OQverall Performance .

- Noise Figure: 4.9 dB (Max Gain); 5.0 (Min Gain)

- RF/IF Conversion Gain: 35 dB (max Gain); 23 dB (Min G
Minimum Detectable Signal: -70 dB8m

— ‘ Dynamic Range: 30 dB minimum '

Figure 2-49  Interconnected receiver goal.
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Figure 2-52  Interconnected receiver gain characteristics
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Figure 2-53  Phase envelope of the interconnected receive module at five gain settings. The
worst case occurred at the band edges (+ 12°).
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Figure 2-54  Differental phase shift for sixteen states of the interconnected receive module.

START
STOPRP

27 .500001600 GHz
30.000000000 GHz

76




"3[NPOUL SAIIOAL A JO SIIEIS UIAXIS Y1 10§ adooaus ured uotuasur sy ¢g-z omS g

ZHI PP0VOVRO0 " QE dol1s
ZHO @@9T0VVRS /2 1UVLS

77

]
\\
\
-

dy

/9P 0°§
ar 0°0 434
| avW Bo| Ieg
w N ) P D T ) B I b I B



o

Table 2-1 The noise figure data of the interconnected receiver module.

RECEIVER NOISE FIGURE DATA

f = 28.75 GHz
GAIN SETTING NOISE FIGURE
"12 dB" ‘ 14.0 dB
" 9 dB" 14.8 dB
" 6 dB" 15.7 dB.
"2 dB" _ 17.2 d8
"-1dB" 18.5 d8 :
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izonzal 27.5-30 GHz
encte - 0d3 Cencer Line

input Return Loss
10 <3/div

Horizoncal 27.5-30GHz
Refe:énce - 0dB Center Line

Qutput Recurn Loss
10 d3/div -~ -

a) Cain and Inpuct Recturn Loss

b) OQutput Return Loss

Figure 2-65 Gain and return loss data for the 2-stage LNA over NASA band.
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Loop to Resonate
1.69/6.3 ¥ FET Capacitance

1

Junction Inductance
1.69/0.85

Drainl 0.054/0.074

0.055| 0013} 06

3.2
<>
' dunction T T T { .- TTTTC AR FET
Parasitics Gate
2000 801239

Total Gate Periphery is 24 mil (610 um).

Cap in pf. ind in nh and res in Ohm.

Values for transmission line is width/length in mils.
Values for cap and res are given as ON/OFF states.

ON: VDS=0 VGS= 0V
OFF: VDS =0 VGSa=-5V

Fig. 4 (a). Branch #1 FETs Model

0.0

T

=20

—40

TTT

-6.0

8.0 : = Measured FET (Off) with Loop
— Modeled FET (Off) with Loop (required)

|s21](dB)

=10. 1™ -= Modeled FET (OH) and Loop

120 B without Junction Inductance
0k
-14. |-

0 N N T A O 1O Y N N N I N I A o
1.0 50 90 13.0 17.0 21.0 25.0 29.0 33.0 37.0

Frequency (GHz) 801338

Fig. 4 (c). OFF State Modeling of Branch #1 FETs

[s21l(dB)

Is21/(dB)

0.0
L.2r
04
~0.6 :
08
-1.0f AN
1.2 .
14 " == Measured FET (On) with Loap ™~ _
"7 |- =— Modeled FET (On) with Loop (required)‘
-1.6 I -— Modeled FET (On) ~
" Loop with No Junction .
=18 Inductance ~
-2'0-!11LLLlll!lllll!ll‘
1.0 50 9.0 13.0 170 210 25.0 29.0 33.0 370
Frequency (GH2) Ba1337
Fig. 4 (b). ON State Modeling of Branch #1 FETs
0.0
=20
—40r
6071
Bo0fF — Simulated with Total Parasitic
~ Inductance of the T-jn Evenly Split
B (0.034 nH-0.034 nH)
-10.0
. == Simulated with MTEE Model in
-12.0 B Touchstone (instead of junction
140 F parasitics)
—16'0-1LLlllllLlllllLlll
10 50 90 13.0 170 21.0 250 29.0 33.0 370
Frequency (GHz)

801338

Fig. 4 (d). Modeling Comparison for Branch #1 in
"OFF" State

Figure 2-72  a) Branch #1 FET model with loop.
b) ON state modeling of branch #1 FETs.
¢) OFF state modeling of branch #2 FETs.
d) Modeling comparison with other two approaches.
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Loop to Resonate FET
Capacitance

0.66/12

Junction Inductanca

- ————— o — ————

1.08/0.14
< e __ _Jl\
Junction Gate FET
Parasitics
2000 801340

{ I i {

g

(K1 N Y S PR N A

[

Total FET gate periphery is 26 mil (650 pm). o
Cther labeling conventions are same as in Fig. 4. =
N
(a) w
20~ = Measured FET (On) with \\
— — Modeled FET (On) with Loop (Required) <
24~ Modeled FET (On) and Loap N
- without Junction Inductance N \
28 N\
I T O T O B B N U A A N SN A
1.0 50 90 130 17.0 21.0 250 290 330 374
Frequency (GHz) 0133
2.0 ------------------------------------------------------ (b)
-2.0
-6.0
5 f— == Measured FET
2 100k (OH) with Loop / *
= L — Modeled FET (OH)
“© with Loop (Required)
~14.017 —. Modeled FET (OH) and
B Loop without Junction
-180 Inductance
-220/[
) I N VS RO NN AN N NS O N N N S BN O O A
10 50 90 130 170 210 250 29.0 330 370
Frequency (GHz) 01334
(c)
Figure 2-73  a) Branch #2 FET model with loop.

b) ON state modeling of branch #2 FETs.
c) OFF state modeling of branch #2 FETs.
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a) Measured insertion loss for modified switched line.

hp

TieuRE 2-74 D) Measured insertion loss for conventional switched line.
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Figure 2-76  a) Phase response of modified switched line model
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FleiRe 2 -7, b) Phase response of conventional switched line model.
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Figure 2-77 a) Reflection at port #1 (180" bit side) for the modified switched line type.
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Fieure 211 b) Reflection at port #1 (180" bit side) for the conventional switched line type.
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